Research

Current Projects

Performance Improvement of V2X Communications

Vehicle-to-everything (V2X) communications have been taking a critical role in facilitating safety applications in intelligent transportation systems (ITS). However, both of the two representative technologies–Dedicated Short-Range Communications (DSRC) and cellular V2X (C-V2X)–have been showing limitations: (i) contention for bandwidth and (ii) latency. Such limitations are expected to cause breakdown of V2X communications in scenarios such as very high traffic density, which this project refers to as “safety hole.” As such, this research (i) investigates the fundamental performance of a V2X network and (ii) designs a protocol to enhance the communications performance.


Impacts of Mobility on Performance of Blockchain in V2X Networks

This research investigates how 'mobility' affects the performance of a blockchain system operating in a vehicle-to-everything (V2X) network. The mobility of nodes incurs a unique challenge to a blockchain system due to continuous change and dynamicity in connectivity of the nodes. Specifically, the mobility makes a proof-of-work (PoW) process difficult since, while moving, the nodes can only have a limited length of time for a "rendezvous" to exchange a new block for verification. For this reason, an accurate modeling for the block exchange behavior in a V2X network is also challenging, which nevertheless has not been discussed in previous studies.


Human EMF Exposure in Wearable Communications Systems

The potential of millimeter wave (mmW) frequencies for wireless communications is enormous for applications requiring Gbps throughput. A major concern is human biological safety under radio-frequency (RF) exposure, mainly due to a higher absorption rate of electromagnetic field (EMF) into human skin at such a high frequency. Possible harmful consequences include thermal or non-thermal heat in the affected tissues. To this end, this research performs mathematical analysis of human RF exposure in wireless communications operating in the mmW spectrum.

Fundings

Millennium Corporation, Real-time data analysis to achieve risk reduction and enhanced security monitoring, ($84,557, Jul. 2019 - Jun. 2020, PI)

Georgia Southern University Faculty Development Committee Award, Wireless communications in nanonetwork for healthcare applications, ($9,986, Jul. 2019 - Jun. 2020, PI)

Georgia Southern University College of Engineering and Computing Faculty Research Seed Grant, Low-cost improvement of wireless sensor network for surface water management, ($7,000, Jan. - May 2019, PI)

Georgia Southern University College of Engineering and Computing Faculty Research Seed Grant, Promotion of traffic safety and communication efficacy in connected vehicles, ($8,000, Jan. - May 2019, Co-PI)

Georgia Southern University College of Engineering and Computing Undergraduate Research Award, Security in underwater communications, ($1,684, Jan. - May 2019, Faculty Advisor for Mr. Treston Montoya)

Georgia Southern University Faculty Development Summer Award, Creation of hands-on projects on disaster emergency communications ($3,000, Jun. - Jul. 2018, PI)

Georgia Southern University College of Engineering and Computing Faculty Research Seed Grant, Operation of future cellular communications in shared bands ($8,000, Jan. - May 2018, PI)